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LETTER TO THE EDITOR 

Chaotic systems and maximum entropy formalism 

W-H Steeb, F S o h  and R Stoop 
D e p m e n t  of Applied Mathematics and Nonlinear Studies. Rand Afrikaans University, PO 
Box 524, Audand Park 2006, South Africat 

Received 17 February 1994 

Abstract. We show how the maximum enmpy formalism can be applied in nonlinear chaotic 
systems. In panicular we show how one can use a few moments of the time evolution of a 
dynamical variable to infer the probability density and hence the Ljapunov exponent. 

The maximum entropy principle is a powerful tool in the investigations of image re- 
consmction, spectral analysis, seismic inversion, inverse scattering, etc. It is proven to 
be the only consistent method for infemng from incomplete information. Here we show 
how the maximum entropy formalism can be applied to the study of chaotic systems. For the 
sake of simplicity we consider onedimensional maps f : [0, 11 4 [0, 11. We assume that 
the map is chaotic and ergodic. The mathematical foundation of one-dimensional chaotic 
and ergodic maps is well described in literature [1-5]. The onedimensional map can also 
be written as a difference equation 

&+I = f ( X J  (1 1 

where t = 0,l.Z. . . . and xo E [O, 11. Let us now introduce the quantities useful in the 
study of chaotic systems. The nth moment of the time evolution of x, is defined as 

where n = 1,2, . . .. Obviously the moments depend on the initial conditions. For It = 1 
we obtain the time average. We find for almost all initial conditions the same value. In the 
case of ergodic systems the moments and the probability density are related by 

where p z 0 for x E [O, 11 and 

i' p(x)dx = 1. 
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The time evolution of the probability density is given by 

I 
P~+I@) = 1 P & ) W  - f(Y))dY (5) 

where t = 0,1,2, . . . and po is the initial probability density, for example po = 1. The 
asymptotic probability density is obtained by solving the Frobenins-Perron integral equation 

(6) 
1 

P ( Y )  := 1 P ( X ) S ( Y  7 f(4) dx. 

For some maps we can solve the Frobenius-Perron integral equation exactly. An example 
is the logistic map f ( x )  = 4x(1 - x ) .  In general we can only find the probability density 
approximately. A numerical method is described by Steeb [6]. If we know the probability 
density we can evaluate the Ljapunov exponent A as 

The Ljapunov exponent can also be calculated as follows: The variational equation of 
xf+1 = f ( x f )  is given by 

d f  
(8) Yf+ l  = x'x --f X d Y f  

where t = 0,1,2,. . .. Then the Ljapunov exponent is given by 

One can use the maximum entropy formalism [7-111 to obtain the probability density 
approximately using as information N moments. In our examples we consider the case 
N = 2. The missing infomation function (entropy) of a probability density p is defined by 

In the maximum entropy formalism, one maximizes the missing information subject to the 
constraints of the available information and to the normalization of the probability density. 
In our case we assume that we have the N lowest moments of the time evolution of the 
dynamical variables which. for ergodic systems, are equal to the moments of the temporal 
probability density. The constraints are introduced via the method of Lagrange multipliers 
h ~ ,  AI ,  . . . , AN. Our aim is to find the approximate probability density pap, which minimizes 

where An, n = 0.1, . . . , N are the Lagrange multipliers €or the N+l  constraints. Performing 
the minimization we obtain 
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where z := el+& is determined from the normalization of the probability density so that 

N 1 = - 1 L I  exp ( - SA.,.> dx. 
Z 

The remaining Lagrange multipliers are obtained by solving the following set of N coupled 
nonlinear equations for A,,,, m = 1.. . . , N 

Let us now consider two examples. 
X,+I = f(xt) exactly. As a first example we consider the tent map f : [O, 11 --f [O, 11 

For both' we can solve the dynamical system 

for x E [0, 1/21 I" 2(1-x) forxe[1 /2 ,1]  f ( x )  = 

which is chaotic and ergodic (even mixing). The (exact) probability density is given by 
p ( x )  = 1. Furthermore the moments take the form 

Let us now assume we know the fmt two moments (xt) = 1/2 and (x,") = 113. Then the 
approximate probability density is given by 

(17) 
1 

~paPp = 2 exp(-hx - M Z )  

and we have to solve the following nonlinear system of equations 

I 
I = exp(-l- h0 - h l X  - A ~ Z )  dx z ( A ~ ,  hl. A ~ )  (184 

to find the Lagrange multipliers ho. hl and Al .  Obviously the solution is ho = -1, AI  = 0, 
A2 = 0. Thus the approximate probability density is given by papp(x) = 1. Thus the exact 
probability density and the approximate probability density coincide. We notice that the 
integration of (18a) leads to the error function. 

As a second example we consider the logistic map f(x) = 4x(1- x ) .  The probability 
density is given by 
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The moments take the form 

Thus the first and second moments are given by (xt) = ~,,($) = i. We have to solve 

1 

1 = J exp(-l- ho - A,X - h2x2)dr 1214 

=J1xexp(-l-Ao-Alx-Azxx2)dr (216) 

= ~ ' x z e x p ( - l - x o - A l x - A ~ x z ) d r .  (214 

We solved system (21) numerically and find 

A0 = 2.69242 AI = -6.768 25 A2 = -Al. (22) 

Obviously AI  = -At  since paw must be symmetxic with respect to x = 1/2. Using 
these values we can find an approximation of the Ljapunov exponent using (7). Numerical 
integration of (7) with the approximate probability density yields A = 0.72. which agrees 
very well with the exact value A = ln2, if we take into account that we only considered 
two moments. 

If we study a dynamical system with unknown moments we have to determine them 
numerically using (2) with a sufficiently large 2". Then we insert the moments into the 
equations for the Lagrange multiplier and solve this set of equations numerically. Finally 
we determine the Ljapunov exponent numerically. A software program in C++ is available 
from the authors to solve the nonlinear equations for the Lagrange multiplier. 

References 

[I1 Oono Y and Osikawa M 1980 Prop. Theor. Phys 64 54 
[21 Ecklllvln J-P and Ruelie D 1985 Rev. Mod Phys. 57 617 
131 Walten P 1982 An lntmduction to Eeodic Theory (New York Springer) 
141 Steeb W-H 1991 A Hondbook of Tem used in Chaos and Quanrumchow (Mannheim: BI- 

[SI Steeb W-H 1994 Choos and Qunntenchaos in mmmischen Systemen (Mannheh BI-WkwwAaFwedag) 
161 Steeb W-H 1992 Chaos and Fmetalr (Mannheim: BI-W%sseNchaftrverlag) 
(71 Jaynes E T 1957 Phys. Rev. 106 620 
I81 Piastino A and ReboUo Neira L 1989 Phys. Rev. A 40 1644 
[9] Shore 1 E and Johnson R W 1980 IEEE Dms. Inform Theory 26 26 
[lo] M a l m  E D, Ritchie R A. Solms F, von Oemen D W and Miller H G 1991 Phys. Left. 266B 169 
[ll] Josh  C G and Gray C G 1984 Chem. Phys. Lett 107 249 

Wissenschaftsverlag) 


